
Correlator Block and Delay Unit
 Control Computer Command Language

David Loone 7 Jan, 1993
Ron Heald 1 Apr, 1995

1. OVERVIEW 1
Command Format 1
Input Data Blocks 2
Output Data Blocks 2
Front Panel Indicators 2
Return Error Codes 3

2. CORRELATOR BLOCK COMMANDS 4
.AA Access Accumulator Memory 5
.AM Access module memory 5
.BA Set block autocorrelation mode 6
.ER Enable/disable pseudo-random data source 6
.MS Master sync select 6
.MT Perform memory test on module memory 6
.PA Access Address Translation Table (ATT) data 7
.PD Access DELAY programming data 8
.PE Access Event Generator Translation Table (EGTT) data 9
.PM Read to or write from the Multibeam Correlator Module registers 10
.PR Set EPS or MCL registers in all Correlator Modules 10
.PX Access XCELL programming data 10
.SM Select module(s) 11
.ST Return the status of the Correlator Block 12

3. DELAY UNIT COMMANDS 13
.DB Define multiple delay units 13
.DD Set delay unit data 14
.DM Set mode of a block of delay units 14
.DP Set the delay setting of a block of delay units 14
.DS Return the status of delay units/recirculators 15
.ED Access event generator distribution module (Z22) 15
.MF Set delay unit mode 16
.RM Set recirculating mode and event signal source of recirculating channel 16
.RO Manipulate recirculator channel offset data 16
.SD Return delay unit status 17

4. EVENT GENERATOR COMMANDS 18



.EE Execute an Event Timing Description (ETD) 21

.EI Initialise the event generator 21

.GT Get the current atomic time 21

.LT Load an Event Timing Description (ETD) 21

5. UTILITY COMMANDS 22
.EX Execute commands from a disk file 22
.IP Set  the IP address of node 22
.TI No operation 22



Control Computer Command Language 1

04/28/98

1 .  O v e r v i e w

This document describes two computer systems used in the Australia Telescope
National Facility (ATNF) correlator.  The Block Control Computer (BCC) provides control for the
Correlator Blocks.  Each block consists of a Block Bus Switch board, a Block Distributor board,
and 8 Correlator Module boards.  Together they correlate the data for a single baseline, i.e. one
pair of antennas.  Three blocks normally reside in a rack and are controlled by a single BCC.

The Delay Unit Control Computer (DUCC) controls up to 24 delay units and recirculators.
The delay units insert an artificial delay into the signal path to compensate for the different
distances from antenna to source.  The recirculators can used whenever the input data rate is
below that at which the individual correlators operate (8 MHz in 1-bit mode or 4 MHz in 2-bit
mode).  By recirculating the data the number of correlated lags is increased resulting in better
spectral resolution.

These computer systems are quite similar in design differing only in the set of
commands they execute and their status displays.  Both use an Intel 80386 or 80486 computer
and run the pSOS operating system from Integrated Systems.  Both receive commands from
and respond to the host Correlator Control Computer (CCC).  This communication is via a RS-
232 serial line or ethernet using the TCP/IP protocol.

When communicating with the BCC system the serial port can only be used to control
block 0.  When the network communication is used commands for Correlator Blocks 0, 1, and 2
are accepted on network ports 400010, 400110, and 400210, respectively.  The DUCC system
has 7 communication ports which accept commands: the serial port plus 6 network ports 400010
through 400510.  Each of these can control any or all of the 24 delay units and recirculators.

C o m m a n d  F o r m a t

Commands are passed from the CCC to the BCC and DUCC systems as ASCII text.  A
command consists of a line of text beginning with a period (“.”) character followed by a two letter
command and any command arguments. The command line is terminated by a carriage return
character (ASCII 13), a new-line character (ASCII 10), or both.  Some commands require an
input data block containing extra information required by the command.  This input data block
immediately follows the command line.  In addition, some commands return an output data block
containing information obtained by the command.

Lines returned by the system to the CCC are terminated by a carriage return character
(ASCII 13) followed by a new-line (ASCII 10).  After any command has been executed (whether
or not any input or output data blocks were involved) the system returns a line containing a
single hexadecimal number which is an error code.  If the command was successfully completed
this error code will be zero.  A non-zero error code indicates that the command could not be
completed and the value indicates the nature of the error (see Return Error Codes below).

The majority of this document is used to describe the individual commands.  In the
descriptions the first line gives the command name and its basic function.  The second line gives
the command and its arguments.  Each argument is listed in italic and optional arguments are
enclosed in square brackets ([ ... ]).  The bullet ( • ) character indicates a space or tab character.
The next lines contain a description of the "type" of each argument.  A list of bold characters
enclosed in parenthesis means that argument may assume any of the emboldened characters.
Two numbers separated by two periods ( .. ) means that argument may accept any numerical
value between or including the two values.  Numerical values separated by commas means that
the argument may assume any of the numerical values listed.  All numerical values given are in
hexadecimal.  (The one exception to this rule is the ETD specification given in the .EE and .LT



2 Control Computer Command Language

04/28/98

commands.)  Normal type is used for characters passed from the CCC to the system, bold type
for the characters passed from the system to the CCC.

For example, the .SM command is used to select the Correlator Modules which will be
accessed in following commands.  The following is an example of the use of this command.

.SM • 5 • 6
0

I n p u t  D a t a  B l o c k s

Some commands require extra input data.  This is supplied in an input data block.  An
input data block is one or more lines of ASCII text with each line containing a single value.  Each
line is terminated by a carriage return character (ASCII 13), a new-line character (ASCII 10), or
both.  The block is terminated by a line containing only the tilde character ("~", ASCII 126).  The
command error code is returned after the end of block marker is received by the system.

The system will read as much data as it requires from an input data block ignoring any
excess.  If too much or not enough information is in the input data block then an error is
returned.

For example the .DP command is used to set the delay setting of a previously defined
block of delay units. The following is an example of the use of this command and illustrates the
use of an input data block.  The delay unit block contains three delay units and the three values
given in the input data block will each be used to set the corresponding delay unit.

.DP • 0
3F49
2746
104C
~
0

O u t p u t  D a t a  B l o c k s

For the system to send data to CCC an output data block is used.  An output data block
consists first of a line containing only the percent sign (“%”, ASCII 37), followed by one or more
lines of text, and finally terminated by a line containing only the tilde character ("~", ASCII 126).
The error code for the command is returned after the block has been sent.  The end of block line
will always be returned even when an error occurs and no data is sent.  If an error occurs while
the data for the output data block is being generated then the output data block is shortened by
sending the end of block line and error code immediately.

The CCC software should read all required information from an output data block then
discard the rest of the data up until the end of block line.  This convention allows backward
compatible upgrades to the system.

For example the .GT command is used to obtain the current atomic time. The following
is an example of the use of this command and illustrates the use of an output data block.

.GT
%
F04D16EF33EF0
~
0

F r o n t  P a n e l  I n d i c a t o r s



Control Computer Command Language 3

04/28/98

There are 10 LED indicators on the front of the Correlator Block Bus Switch board of
which three are used by the BCC.  These provide information about the current state of the BCC
software and hardware.  The functions of these indicators are:

• CPU OK (yellow).  Indicates the BCC is functioning properly by being on and off during
alternate seconds.

• EVT GEN (yellow).  Will be lit whenever the software is generating data for the event
generator.

• BCC WAIT (yellow).  Will be lit whenever the BCC is waiting for a command from
CCC, or inversely will be off whenever it is executing a command.

R e t u r n  E r r o r  C o d e s

At the end of execution of any command the system returns an error code to the host
computer.  Error codes consist of 16-bit unsigned numbers (four hexadecimal digits).  The
possible error codes are given below.

Error Description

0000 Ok.  The command completed successfully.

7001 IllegalCommand.  A line starting with a period (“.”) has been received but the
next two characters were not recognised as a legal command.

7002 MissingArgument.  A command line argument which is required by the given
command was not present in the command line.

7003 IllegalArgument.  A command line argument either contained an illegal
character and could not be converted, or contained an illegal value.

7004 IllegalMode.  The command line contained an illegal mode.

7005 MemoryAllocError.  An error occurred when the system attempted to allocate
a memory block.

7006 DataBlockValueError.  An input data block element either contained illegal
characters and could not be converted, or contained an illegal value.

7007 MissingDataBlockElement. There were not enough lines in the input data
block following the command.

7008 TooManyDataBlockElement. There were too many lines in the input data
block following the command.

7009 ExceededRecursiveLimit. Calls to the system shell were nested too deeply.
This can only occur when using the .EX command.

700A FileNotFound.  The given disk file name was not found.  This can only occur
when using the .EX command.

700B ProgFileNotFound.  The given memory file name was not found.  This can
only occur when using the .PA, .PD, .PE, and .PX commands.



4 Control Computer Command Language

04/28/98

700C ProgFileCRCError.  A CRC error occurred when reading the given memory
file.  This can only occur when using the .PA, .PD, .PE, and .PX commands.

700D NonExistentMemory.  The interface status register indicated an attempt was
made to access a memory location which does not exist.

700E MemoryAddressOverflow. The interface status register indicated that the
address register overflowed while accessing a memory location.

700F UnknownETD.  The Event Timing Description for the given index has not
been defined with .LT command.  This can only occur when using the .EE
command.

7010 BATOffLine.  The event generator indicates the BAT clock signal is not
present or broken.

7011 EGFIFOError.  An event generator FIFO memory fault occurred.

7012 EGPreambleError.  The system failed to find the preamble to the event
generator version/serial number string.

7013 EGSerNumTooLong. The event generator version/serial number string was
longer than expected.

7014 ETDTooLong.  The given Event Timing Description was too long.  This can
only occur when using the .LT command.

7015 BadETDDesc.  A error occurred while the .LT command was parsing an
Event Timing Description.  This can only occur when using the .LT
command.

7016 NoEventGen.  No event generator is present in the system.

7018 NonexistentModule.  The addressed Correlator Module is not present.

7019 IllegalModuleCombination.  Only one Correlator Module can be selected for
the command.

701A DelayUnitOwned.  A delay unit in the given delay unit block is already
assigned.  This can only occur when using the .DB command.

701B UnknownDelayTable.  The given delay unit block index has not be defined
with the .DB command.

701C OutOfDelayBulkTables.  All available delay unit blocks have been used.
This can only occur when using the .DB command.

701D ETDQueueOverflow.  The message queue where ETD processing requests
are placed is full.  This usually indicates previous ETD processing has not
been completed.  This can only occur when using the .EE command.

2 .  C o r r e l a t o r  B l o c k  C o m m a n d s

The following is a description of the commands which are available only on the Block
Control Computer (BCC) system.  They are used to control and monitor the Correlator Block.



Control Computer Command Language 5

04/28/98

All of these commands (except .SM) take Correlator Block bus control away from the external
transfer bus.  When this happens the host computer cannot access the block.  The commands
should not be executed when there is a possibility that CCC requires the bus.

.AA .AA
Access Accumulator Memory.

.AA • mode • address • length
mode: (R, W)
address: 0..1FFF
length: 1..2000

This command provides access to the Accumulator Memory of the currently selected
Correlator Module(s) and the PC Module.  This memory consists of 8K x 24-bit words and is
accessed using addresses 0 through 1FFF16.  The address argument provides the start address
for the data transfer.  The length argument is the number of words to be transferred.  This
memory resides in the lower part of the total module memory all of which can be accessed using
the .AM command.

The mode argument determines whether the data transfer is to or from the Accumulator
Memory.  If mode is R then data is transferred from the Accumulator Memory to the host by an
output data block.  If mode is to W then data is transferred from the host to the Accumulator
Memory by an input data block.  In either case the data block consists of length 24-bit unsigned
hexadecimal integers.  Any combination of Correlator Modules or the PC Module by itself may
be selected for a write operation, but only any single module may be selected for a read.  See
the .SM command below

Examples:

To transfer the contents of the first 40016 locations in the Accumulator Memory to the
host computer using an output data block the following command would be used:

.AA • R • 0 • 400

To clear the first two Accumulator Memory locations the following command and input
data block would be used.

.AA • W • 0 • 2
0
0
~

.AM .AM
Access module memory.

.AM • mode • address • length
mode: (R, W)
address: 0..FFFF
length: 1..10000

This command provides access to the memory of the currently selected Correlator
Module(s) and the PC Module.  This includes the Accumulator Memory, Address Translation
Table (ATT) memory, various registers, and several empty spaces.  The memory is organised as
of 32K x 16-bit words.  The address argument provides the start address for the data transfer.
For historical reasons byte addresses 0 to FFFF16 are used.  The least significant bit of address
is discarded.  The length argument is the number of words to be transferred.



6 Control Computer Command Language

04/28/98

The access-mode argument determines the direction of the transfer.  If mode is R then
data is transferred from the Module Memory to the host by an output data block.  If mode is W
then data is transferred from the host to the Module Memory by an input data block.  In either
case the data block consists of length 16-bit words.  Any combination of Correlator Modules or
the PC Module by itself may be selected for a write operation, but only any single module may
be selected for a read.  See the .SM command below.

. BA .BA
Set block autocorrelation mode.

.BA • group0-sel • group1-sel
group0-sel: (C, X, Y, S)
group1-sel: (C, X, Y, S)

This command controls the gating of the four input IFs coming into the Block.  The four
IFs are grouped into pairs which are each capable of being switched for autocorrelation.  The
group0-sel parameter controls IF lines 0 and 1.  The group1-sel parameter controls IF lines 2 and
3.  A value of C puts that group into cross-correlation mode.  A value of X or Y switches that
input channel onto both of the block backplane channels giving autocorrelation of that input
channel.  A value of S gives cross-correlation of the two input channels but they are swapped as
they go onto the block backplane.

.ER .ER
Enable/disable pseudo-random data source.

.ER • enable
enable: (Y, N)

A pseudo-random data source may be switched on to provide the Correlator Block with
random data for test purposes.  If enable is equal to N then the data source will be switched off
and the data for the Correlator Block will come from the data input.  If enable is equal to Y then
the pseudo-random data source will be switched on.

.MS .MS
Master sync select.

.MS • master-sync
master-sync: 0..4

This command selects the master sync for the phase locked loop circuit on the Block
Distributor.  This can be one of four external clock signals associated with the IF inputs coming
from the delay unit, or an internal oscillator.  This command selects which of these five sources
is used.  Setting the source to 0-3 selects one of the 4 external sources while 5 selects the
internal oscillator.

.MT .MT
Perform memory test on module memory.

.MT • memory
memory: 0..2



Control Computer Command Language 7

04/28/98

This command performs a memory test on memory in the currently selected Correlator
Module.  Only one module may be selected.  The memory tested depends upon the memory
parameter.  The valid values for memory are:

0 Accumulator Memory
1 Address Translation Table Memory
2 Event Generator Translation Table Memory

Several memory tests are performed on the selected memory. The test results are
returned in real time as the tests are completed.  If a test fails the results are returned and then
the next test is attempted.  The tests are:

Zeros test All memory is set to zero then read and checked.
Ones test All memory is set to one then read and checked.
Address test Each memory location is set to its address then all memory

is read and checked.
Walking ones test Write first memory location with increasing integral powers

of two (walking one) each time reading back and checking.
Then repeat for all other memory locations.

Alias test Write all memory with zeros, then for each address on an
address bit boundary all ones are written and all of memory
is checked to see that the value does not occur anywhere
else.

The command returns an output data block containing five lines of text.  These are:
zeros-success [ • zeros-fail-address • zeros-fail-data ]
ones-success [ • ones-fail-address • ones-fail-data ]
address-success [ • address-fail-address • address-fail-data ]
walking-ones-success [ • walking-ones-fail-address • walking-ones-data •

walking-ones-fail-data ]
alias-success [ • alias-test-address • alias-fail-address ]
where:

zeros-success, ones-success, address-success, walking-ones-success,
alias-success: (T, F), equal to T if the corresponding test was
successful, or F is the test found a fault.

zeros-fail-address, ones-fail-address, address-fail-address,
walking-ones-fail-address, alias-fail-address: 0..FFFF, The
address at which the corresponding test failed.  Not present if
test was successful.

zeros-fail-data, ones-fail-data, address-fail-data, walking-ones-fail-data,
alias-fail-data: The data read from the fail-address which caused
the test to fail.  Not present if the test was successful.

walking-ones-data: The data written to the fail-address when the test
failed.  Not present if the test was successful.

walking-test-address: The address where all ones were written when the
test failed.  Not present if the test was successful.

.PA .PA
Access Address Translation Table (ATT) data.

.PA • $ mode [ : file-name ]
mode: (D, G, L, R, W, Z)
file-name: file-name-type

This command is used to access Address Translation Table (ATT) data.  A system of
memory resident files can be used hold ATT data.  The ATT can be written directly from the
contents of a file thus eliminating the need for an input data block and greatly reducing the



8 Control Computer Command Language

04/28/98

needed processing.  Command modes are available for reading and writing the files, for
transferring their contents to the ATT, and for listing all known files.

The mode argument determines what action is taken and whether the file-name
argument is required.  The possible values for mode are:

D: direct.  An input data block containing ATT data is expected.  Its contents are written
into the ATT of the selected Correlator Module(s) immediately.  The file-name
argument is not required but if given the data is also written there.

G: get.  If the file-name argument is present then it contents are returned in an output
data block.  If the file-name argument is not present then the ATT of the selected
Correlator Module is read and the contents returned in an output data block.

L: list.  A list of all ATT data files is returned in an output data block.  The file-name
argument is not required.

R: read.  The ATT of the selected Correlator Module(s) is written from the ATT
programming file given by file-name.  The file-name argument is required.

W: write.  An input data block containing ATT data is expected.  Its contents are written
to the file given by file-name.  This mode does not alter the contents of the ATT.
The file-name argument is required.

Z: default.  The ATT of the selected Correlator Module(s) is written with system default
data.  The file-name argument is not required.

An input or output data block for the .PA command defines the contents of the ATT.  It
consists of 1024 lines each containing a 16-bit unsigned hexadecimal number.  The first word of
the data section corresponds to the lowest memory location of the ATT.

Any combination of Correlator Modules may be selected for a write operation, but only
any single module may be selected for a read.  See the .SM command below.

A directory listing output data block (obtained when mode=L) consists of a number of
lines each one corresponding to a directory entry.  The format of the lines is as follows:

date • time • count • file-name

The date and time fields indicate when the file was last accessed.  The format of date is
"dd/mm/yy" giving the day, month and year, respectively. The format of time is "hh:mm:ss"
giving the hour, minute, and second, respectively. The count field gives the number of times the
file has been accessed.  The file-name field can be any number of characters in length and
contains the name of the file.

.PD .PD
Access DELAY programming data.

.PD • $ mode [ : file-name ]
mode: (D, G, L, R, W)
file-name: file-name-type

This command is used to access DELAY chip programming data.  A system of memory
resident files can be used hold DELAY data.  The DELAY chip can be written directly from a file
thus eliminating the need for input data block and greatly reducing the processing.  Command
modes are available for reading and writing the files, for transferring their contents to the DELAY
chip, and for listing all known files.

The value of mode determines what action is taken and whether the file-name argument
is required.  The possible values for mode are:



Control Computer Command Language 9

04/28/98

D: direct.  An input data block containing DELAY data is expected.  Its contents are used
to program the DELAY chips of the selected Correlator Module(s) immediately.
The file-name argument is not required but if given the data is also written there.

G: get.  If the file-name argument is present then it contents are returned in an output
data block.  If the file-name argument is not present then the DELAY chips of the
selected Correlator Module are read and the contents returned in an output data
block.

L: list.  A list of all DELAY programming files is returned in an output data block.  The
file-name argument is not required.

R: read.  The DELAY chips of the selected Correlator Module(s) are written from the
DELAY programming file given by file-name.  The file-name argument is
required.

W: write.  An input data block containing DELAY programming data is expected.  Its
contents are written to the file given by file-name.  This mode does not alter the
contents of the DELAY chips.  The file-name argument is required.

An input or output data block for the .PD command defines the DELAY programming
data.  It consists of 36 lines each containing a 7-bit unsigned hexadecimal number.  The first 18
lines contains the programming information for DELAY chip 0.  The second 18 lines contains the
programming information for DELAY chip 1.  For a description of the format of the 18 data lines
corresponding to a DELAY chip see the description of the .PX command below.

Any combination of Correlator Modules may be selected for a write operation, but only
any single module may be selected for a read.  See the .SM command below.

The directory listing output data block (obtained when mode=L) has the same format as
described under the .PA command above.

.PE .PE
Access Event Generator Translation Table (EGTT) data.

.PE • $ mode [ : file-name ]
mode: (D, G, L, R, W, Z)
file-name: file-name-type

This command is used to access Event Generator Translation Table (EGTT) data.  A
system of memory resident files can be used hold EGTT data.  The EGTT can be written directly
from a file thus eliminating the need for input data block and greatly reducing the processing.
Command modes are available for reading and writing the files, for transferring their contents to
the EGTT, and for listing all known files.

The mode argument determines what action will be taken and whether the file-name
argument is required.  The possible values for mode are:

D: direct.  An input data block containing EGTT data is expected.  Its contents are
written into the EGTT of the selected Correlator Module(s) immediately.  The
file-name argument is not required but if given the data is also written there.

G: get.  If the file-name argument is present then it contents are returned in an output
data block.  If the file-name argument is not present then the EGTT of the
selected Correlator Module is read and the contents returned in an output data
block.

L: list.  A list of all EGTT data files is returned in an output data block.  The file-name
argument is not required.

R: read.  The EGTT of the selected Correlator Module(s) is written from the EGTT
programming file given by file-name.  The file-name argument is required.



10 Control Computer Command Language

04/28/98

W: write.  An input data block containing EGTT data is expected.  Its contents are written
to the file given by file-name.  This mode does not alter the contents of the
EGTT.  The file-name argument is required.

Z: default.  The EGTT of the selected Correlator Module(s) is written with system default
data.  The file-name argument is not required.

An input or output data block for the .PE command defines the contents of the EGTT.  It
consists of 2048 lines each containing a 8-bit unsigned hexadecimal number.  The first word of
the data section corresponds to he lowest memory location of the EGTT.

Any combination of Correlator Modules may be selected for a write operation, but only
any single module may be selected for a read.  See the .SM command below.

The directory listing output data block (obtained when mode=L) has the same format as
described under the .PA command above.

.PM .PM
Reads from or writes to the Multibeam Correlator registers.

.PM • address • [data0] • [data1] • [data2] •........[ data31]
address: Base address of Correlator Module
data0 - dataN: Register address and data to load into register.

This command reads from or writes to the registers of the designated Correlator Module.
To Write the command must supply the address and at least 1 register/address value. The data
is made up of 2 fields: bits 0 - 15 contain data, bits 16 - 20 contain the register number and bits
21 - 31 are 0; for example, the data 123456, puts the data 3456 into register 12.

To read supply only the Correlator Module base address. An output data block is
returned with 33 entries. Same data encoding is used as with the write. the 33rd entry is the
serial number and it takes the register number 3F.

.PR .PR
Set EPS or MCL registers in all Correlator Modules.

.PR • mode • data0 • data1 • data2 • data3 • data4 • data5 • data6 • data7
mode: (E, M)
data0: datum for module 0
data1: datum for module 1
   ...
data7: datum for module 7

This command sets the contents of either the EPS or MCL registers in all Correlator
Modules at once.  The is much faster than performing the equivalent series of .SM and .AM
commands.  A mode of E indicates the EPS registers are to be written, M indicates the MCL
registers.  If any datum has bits set in the upper word, ie is greater than 65,535, the
corresponding module is NOT written.

.PX .PX
Access XCELL programming data.



Control Computer Command Language 11

04/28/98

.PX • $ mode [ : file-name ]
mode: (D, G, R, L, W)
file-name: file-name-type

This command is used to access XCELL programming data.  A system of memory
resident files can be used hold XCELL data.  The XCELL can be written directly from a file thus
eliminating the need for input data block and greatly reducing the processing.  Command modes
are available for reading and writing the files, for transferring their contents to the XCELL, and
for listing all known files.

The value of mode determines what action will be taken and whether the file-name
argument is required.  The possible values for mode are:

D: direct.  An input data block containing XCELL data is expected.  Its contents are used
to program the XCELL chips of the selected Correlator Module(s) immediately.
The file-name argument is not required but if given the data is also written there.

G: get.  If the file-name argument is present then it contents are returned in an output
data block.  If the file-name argument is not present then the XCELL chips of the
selected Correlator Module are read and the contents returned in an output data
block.

L: list.  A list of all XCELL programming files is returned in an output data block.  The
file-name argument is not required.

R: read.  The XCELL chips of the selected Correlator Module(s) are written from the
XCELL programming file given by file-name.  The file-name argument is
required.

W: write.  An input data block containing XCELL programming data is expected.  Its
contents are written to the file given by file-name.  This mode does not alter the
contents of the XCELL chips.  The file-name argument is required.

An input or output data block for the .PX command defines the XCELL programming
data.  It consists of 288 lines each containing a 7-bit unsigned hexadecimal number.  The first 18
lines contain the programming data for XCELL chip 15.  The last 18 lines contains the
programming data for XCELL chip 0.  The format of the 18 numbers corresponding to a single
XCELL are:
Word Stage Program bit function

6 5 4 3 2 1 0
0 SwDelayY ZD SD2 SD1 SD0 X X X
1 VarDelayY1 ZD Casc VD4 VD3 VD2 VD1 VD0
2 VarDelayY2 ZD Casc VD1 VD0 X X X
3 VarDelayY3 ZD Casc VD2 VD1 VD0 X X
4 VarDelayY4 ZD Casc VD1 VD0 X X X
5 VarDelayY5 ZD Casc VD4 VD3 VD2 VD1 VD0
6 VarDelayY6 ZD Casc VD1 VD0 X X X
7 VarDelayY7 ZD Casc VD2 VD1 VD0 X X
8 VarDelayY8 ZD Casc VD1 VD0 X X X
9 SwDelayX ZD SD2 SD1 SD0 X X X
10 VarDelayX1 ZD Casc VD4 VD3 VD2 VD1 VD0
11 VarDelayX2 ZD Casc VD1 VD0 X X X
12 VarDelayX3 ZD Casc VD2 VD1 VD0 X X
13 VarDelayX4 ZD Casc VD1 VD0 X X X
14 VarDelayX5 ZD Casc VD4 VD3 VD2 VD1 VD0
15 VarDelayX6 ZD Casc VD1 VD0 X X X
16 VarDelayX7 ZD Casc VD2 VD1 VD0 X X
17 VarDelayX8 ZD Casc VD1 VD0 X X X

Any combination of Correlator Modules may be selected for a write operation, but only
any single module may be selected for a read.  See the .SM command below.



12 Control Computer Command Language

04/28/98

The directory listing output data block (obtained when mode=L) has the same format as
described under the .PA command above.

.SM .SM
Select module(s).

.SM • [ modnum [ • modnum [ • modnum . . . ] ] ]
modnum: 0..7

This command selects the indicated module(s) for access by subsequent commands.  If
more than one module number is given then all those modules are selected and only write
operations may be carried out on the modules

.ST .ST
Return the status of the Correlator Block.

.ST • modnum
modnum: 0..C

This command returns the current status of some aspect of the block. Values of 016..716
correspond to Correlator Modules 0 through 7,  816 to the PC Module, 916 to the block
distributor, A16 to the Block Control Computer itself, B16 to the event generator, and C16 to all
the Correlator Modules.  The returned output data block contains one or more lines of which
describe a particular aspect of the hardware.  The number and interpretation of the lines depend
upon the piece of hardware for which the status information is requested.

If modnum is in the range 016..716 (Correlator Modules) the returned data block contains
the following line of data:

reconfiguration • delay-status • correlation-mode • channel-select • bit-mode •
sel-x • sel-y • eg-filter • att-page • error-status • recirc • serial-number

where:
reconfiguration: 0..7, the reconfiguration of the module being tested.
delay-status: (N, F, I, L), the delay status of the module.  A value of N

means that it has no delaying function.  A value of F means that
it is first in a concatenated set.  A value of B means that it is the
intermediate element of a concatenated set.  A value of L
means that it is the last of a concatenated set.

correlation-mode: (A, C), the correlation mode of the modules.  A value
of A means that the module is in autocorrelation mode.  A value
of C means that the module is in cross-correlation mode.

channel-select: (X, Y), the selected channel for autocorrelation and
module concatenation.

bit-mode: 0, 1, the bit mode (1 or 2) of the module.
sel-x: 0..3, the backplane IF channel selected for the module X channel.
sel-y: 0..3, the backplane IF channel selected for the module Y channel.
eg-filter: 0..FF, the event generator filter value.
att-page: 0..7, the currently selected ATT page number.
error-status: 0..7FF, the error status register of the module.
serial-number: 0..FFF, the serial number of the module from the serial

number PROM.

If modnum is 816 (PC Module) the return data block contains the following line of data:
NOT IMPLEMENTED



Control Computer Command Language 13

04/28/98

If modnum is 916 (Block Distributor) the return data block contains the following line of
data:

NOT IMPLEMENTED

If modnum is A16 (Block Control Computer), the return data block contains the following
line of data:

selected-modules • modules-present • terminator • block-id • module-error •
serial-number

where:
selected-modules: set of 0..8, the currently selected modules.  Bits 0..7

indicate which Correlator Modules are currently selected.  Bit 8
is high if the PC Module or Block Terminator is currently
selected.

modules-present: set of 0..9, the modules installed in the block.  Bits 0..7
indicate which Correlator Modules are present in the block.  Bit 8
is high if the PC Module or Block Terminator is present.  Bit 9 is
high if the Block Distributor is present.

terminator: (T, F), equal to T if the PC Module is a terminator board.
block-id: 0..FF, the Block Id for the Sky Transfer bus as set on the

backplane.
module-error: (T, F), equal to T if one of the modules with error flag

enable is indicating an error.
serial-number: 0..FFFF, the serial number of the switch board from the

serial number PROM.

If modnum is B16 (event generator), the return data block contains the following line of
data:

NOT IMPLEMENTED

If modnum is C16 (all Correlator Modules) the return data block contains a line for each
Correlator Module which is present.  Each line contains the following data:

module-number • reconfiguration • delay-status • correlation-mode •
channel-select • bit-mode • sel-x • sel-y • eg-filter • att-page •
error-status • recirc • serial-number

where:
module-number : 0..7, the module number to which the remainder of the

line applies.
The remaining line fields are as described above under Correlator

Modules.

3 .  D e l a y  U n i t  C o m m a n d s

The following is a description of the commands which are available only on the Delay
Unit Control Computer (DUCC).  They are used to control and monitor the delay units and
recirculators.

There are two methods of accessing the delay units.  The simplest way is to write delay
setting information to individual delay units using a single command for each unit. The
commands for accessing individual delay units are .DD for setting the delay setting, .MF for
setting the mode, and .SD for returning the status.

The second method of accessing the delay units is to write delay settings to a previously
defined block of delay units using one command.  This reduces command execution and
communications traffic overhead.  Presently up to the number of delay units of such blocks can



14 Control Computer Command Language

04/28/98

be defined.  The commands for accessing a block of delay units are .DB for defining the block,
.DM for setting the modes, .DP for setting the delay setting and .DS for returning the status.

.DB .DB
Define multiple delay units.

.DB • [ block ]
block: 0..17

This command defines which delay units will be used in subsequent block data unit
manipulations.  An input data block following the command is used to define the delay units.
Each of the lines contains a number in the range 0..17 which defines one delay unit.  Checking is
done to ensure that delay units are present and do not appear in any other delay unit block.

The information in the input data block is stored for later use by the .DS, .DM and .DP
commands.  These commands act on the delay units defined in the .DB command.  For
example, if the following .DB command is executed:

.DB 0
5
6
7
15
~

Then a subsequent .DP 0 command would accept a data block containing 4 data elements
representing the delay setting for delay units 5, 6, 7, and 2110 respectively.

.DD .DD
Set delay unit data.

.DD • delay-unit • delay
delay-unit: 0..17
delay: 0..FFFF

This command sets the delay of a single delay unit.  The delay setting takes effect on
the next integration cycle.

.DM .DM
Set mode of a block of delay units.

.DM • [ block ]
block: 0..17

This command sets the modes of the block of delay units previously defined by a .DB
command.  An input data block is required which contains delay unit mode values (one per line)
in one to one correspondence to the delay unit numbers given in the block.  The modes of the
delay units defined by the .DB command are then set in to the values given in this command.
The mode settings come into effect at the beginning of the next integration cycle.  The block
argument specifies one of the delay unit blocks defined by the .DB command.

.DP .DP
Set the delay setting of a block of delay units.



Control Computer Command Language 15

04/28/98

.DP • [ block ]
block: 0..17

This command sets the delay settings of the block of delay units previously defined by a
.DB command.  An input data block is required which contains delay unit delay setting values
(one per line) in one to one correspondence to the delay unit numbers in the block.  The delay
settings of the delay units defined by the .DB command are then set in to the values given in this
command.  The delay settings come into effect at the beginning of the next integration cycle.
The block argument specifies one of the delay unit blocks defined by the .DB command.

.DS .DS
Return the status of delay units/recirculators.

.DS • mode • [ block ]
mode: (A, B, R)
block: 0..17

This command returns the status of some aspect of the delay units and/or recirculators.
The value of mode determines what action will be taken and whether the block argument is
needed.  The returned output data block contains one or more lines of which describe a
particular aspect of the hardware.  The number and interpretation of the lines depend upon the
piece of hardware for which the status information is requested.  The possible values for mode
are:

A:  Report all delay and recirculators unit numbers which are present.  To be reported
the delay units must either belong to the caller or not be allocated.  The output data block
contains the following two lines of data:

D [ delay-unit ] • ... • [ delay-unit ]
R [ recirculator-unit ] • ... • [ recirculator-unit ]
where:
delay-unit: 0..23, delay unit number.

B:  Report the status of the block of delay units previously defined by a .DB command.
The output data block contains a number of text lines each corresponding to the status of a
single delay unit in the block.  There is one additional line which contains the times at which the
status was read and the delays were last written.  The block argument is required and specifies
one of the delay unit blocks defined by the .DB command.  Each delay unit status line consists of
the following:

bin-status • o delay-unit-status • o delay-unit-mode • o delay-unit-setting
where:

bin-status: 0,1, the current status of the bin associated with the delay
unit specified by delay-unit.

delay-unit-status: 0..3, the current status of the delay unit specified by
delay-unit.

delay-unit-mode: 0..3, the current mode of the delay unit specified by
delay-unit.

delay-unit-setting: 0..FFFF, the current delay setting of the delay unit
specified by delay-unit.

The bin-status and delay-unit-status values are the status values latched at the end of
the previous integration cycle.

The last line contains the following data:
status-bat o delay-bat
where:



16 Control Computer Command Language

04/28/98

current-bat: 0..FFFF FFFF FFFF, the current time.

delay-bat: 0..FFFF FFFF FFFF, the time the delays were last written.  This refers to the
last .DP command, not the last .DD command..

R:  Report all delay unit numbers which are present.  To be reported the delay units must
either belong to the caller or not be allocated.  The output data block contains a line for each
delay unit reported.

.ED .ED
Access event generator distribution module (Z22).

.ED • mode • address • length
mode: (R, W)
address: 0..11
length: 1..12

This command accesses the memory of the event generator distribution module.  The
address argument provides the start address for the data transfer.  The length argument is the
number of words to be transferred.  The possible values for mode are:

R: read.  Read the specified memory and return the results in an output data block.
W: write.  Write the specified memory with the contents of the following input data block.

.MF .MF
Set delay unit mode.

.MF • delay-unit • mode
delay-unit: 0..17
mode: 0..3

This command sets the mode of a single delay unit.  The mode takes effect on the next
integration cycle.

.RM .RM
Set the recirculating mode and the event signal source of a Recirculating Channel.

.RM • recirculator-unit • mode • source
recirculator-unit: 0..17
mode: 0..3
source: 0..3

The recirculator is used when the bandwidth of the signal is less than 8 MHz (1-bit sampling) or 4
MHz (2-bit sampling).

An event generator signal is required for synchronisation.  This signal can be one of the four
event signals (EG0 ... EG3) on the delay unit backplane as specified by the source.

Example:
.RM 2 1 0

Sets recirculator unit 2 to mode 1 (1 MHz bandwidth in 2-bit sampling mode) with EG0 as the
synchronisation signal.



Control Computer Command Language 17

04/28/98

.RO .RO
Access recirculator channel offset data.

.RO • mode • recirc-unit • [ length ]
mode: (R, W)
recirc-unit: 0..17
length:: 0..10

This command loads the offset data into the specified Recirculator Channel.  There are
sixteen 16 bit words in each Channel where the offset data is loaded.  Each recirculating mode
requires a different number of offset data.  Mode 0 requires two words, mode 1 requires four
words, mode 2 requires eight words, and mode 3 all sixteen words.  Offset data must be loaded
before running the Recirculator, and because it will be in the “set” state after executing the .RO
command must always be followed by the .RM command.  This will turn the recirculator channel
into the “run” state.

The offset data consists of 1 sign bit and 15 magnitude bits.  The most-significant bit is the sign
bit and when set indicates the value is negative.  The remaining 15 bits are the absolute delay
value.  The actual value passed in the command is the number of samples divided by 8.

When a read operation is performed the returned information takes the following form:
offset-data
.
.
~

where: offset-data: 0 .. FFFF, the offset data stored in the corresponding location.

Examples:
.RO W 3 4
0
80
8080
100
~

Load four words of offset data to Recirculator channel 3.  This will produce actual delay offsets of
0, +1024, -1024, +2048 samples.

.RM 3 1 0
Set the channel running in mode to 1.

.RO R 3
Read back all sixteen words of the offset data from Recirculator Channel 3.

.SD .SD
Return delay unit status.

.SD • delay-unit
delay-unit: 0..17

This command returns an output data block containing the status of a single delay unit.
If delay-unit is not present then the data block contains information on the delay system and has
the following form:

delays-present
where:



18 Control Computer Command Language

04/28/98

delays-present: 0..FFFF, a bit-map of the currently present delay units in
the delay system.  High bits in delays-present correspond to
delay units which are present.

If delay-unit is present then the data block contains data on one of the delay units and is
of the following form:

bin-status-o delay-unit-status o delay-unit-mode o delay-unit-setting
where:

bin-status: 0..3, the current status of the bin associated with delay-unit.
delay-unit-status: 0..3, the current status of the delay-unit.
delay-unit-mode: 0..3, the current mode of the delay-unit.
delay-unit-setting: 0..FFFF, the current delay setting of the delay-unit.

The bin-status and delay-unit-status values are the status values latched at the end of
the previous integration cycle.

4 .  E v e n t  G e n e r a t o r  C o m m a n d s

The event generator is a custom hardware device designed and built at the ATNF.  It can
generate up to 16 timing signals and a clocking signal.  It includes a frame grabber used to
obtain information from the Binary Atomic Time (BAT) clock, aka the Hunt clock.  The following
is a description of the commands which are available on both the Block Control Computer (BCC)
and Delay Unit Control Computer (DUCC) systems when equipped with this device.

To control the event generator’s timing signals an Event Timing Description (ETD) is
used.  An ETD is a recursive data structure which defines a stream of events for the event
generator.  An ETD acts like a program which is followed to generate the data (time and events)
to send to the event generator.  It consists of the ETD commands listed below.  Of special
importance is the Sequence command which allows an ETD to be recursive.  It is used to create
loops within an ETD.

The ETD processor contains 8 event and 8 time registers which can be manipulated by
the ETD.  Each event register holds a 16-bit unsigned number, and each time register hold a 64-
bit unsigned number.  The registers are accessed through the processing of the ETD.  Event
register 0 has special meaning in the ETD commands and is referred to as the accumulator.
The accumulator can also be accessed by specifying $0 in the same way as the other registers.
There is also a carry register which is used in processing the Increment command.  It can be
cleared using the ClearCarry command.

The input data block used to define an ETD consists of a number of text lines.  Each line
contains a command and any needed arguments separated by spaces or tabs in the same way
as command lines.

All specifications of time in an ETD definition are of a data type called reduced-BAT .
The integer part of a reduced-BAT time represents the least significant 48-bits of atomic time in
microseconds.  It can contain up to 12 hexadecimal digits.  The integer part may optionally be
followed by a decimal point (“.”) and up to 8 hexadecimal digits giving the microsecond fraction.
Actual event times are truncated to the nearest microsecond but the fractional part is retained to
minimize accumulated errors.

All specifications of events in an ETD definition are of a data type called event-def.
Such a value can take two forms:  It can be a literal consisting of a hexadecimal number in the
range 0..FFFF, or it can be the contents of an event register.  An event register is specified by a
"$" character followed by a hexadecimal number in the range 0..8.  For example, $6 refers to
register 6.  For compatibility with previous software versions literals maybe prefixed with the #
character.



Control Computer Command Language 19

04/28/98

The time offset argument of the event definition (‘e’) and sequence (‘s’) commands, and
the period argument of the sequence (‘s’) command can also take two forms.  They can be a
reduce-BAT literal, or the contents of a time register.  A time register is specified by a "$"
character followed by a hexadecimal number in the range 0..8.  For example, $6 refers to
register 6.

Examples:

This ETD will generate a 1Hz square wave with 50% duty cycle on the least significant
bit of the event generator output.  The square will be generated for 3276710 complete cycles
starting at the time given in the .EE command.

S • 0 • 2 • FFFE • 7A120
X • 0001
E • 0 • $0

This ETD will generate a 10 millisecond period square wave for the first half of each
second, and a 20 millisecond period wave of 8 millisecond width pulses for the second half of
each second on output bit 0.  Output 1 wil be low for the first half of each second and high for the
second half.  It will run for 65535 seconds and output bit 1 will be left high.

S • 0 • 2 • FFFF • F4240
S • 0 • 2 • 32 • 2710
E • 0 • 1
E • 1388 • 0
S • 7A120 • 2 • 16 • 4E20
E • 0 • 3
E • 1F40 • 2

E T D  C o m m a n d s

And:
A.• and-value
where:

and-value (event-def) is a number which is ANDed with the current contents of
the accumulator and the result is placed back into the accumulator.

This command performs an AND function of and-value and the current contents of the
accumulator and places the result back into the accumulator.

ClearCarry:
C

This command clears the carry register.  The carry register is used in conjunction with
the ETD Increment command.

EventDefinition:
E.• time-offset.• event [ • mask ]
where:

time-offset (reduced-bat) is the offset from the current base time at which this
event is to occur.

event (event-def) is a value which is output by the event generator at the time of
the event.

mask (event-spec) is a value which defines the output bits of the Event
Generator which are to be changed by the EventDefinition.



20 Control Computer Command Language

04/28/98

This is the fundamental definition of an event which is generated at the time calculated
by the elements of the ETD in which it is contained.  If mask is omitted then all bits in event are
used.  If mask is present then bits in mask which are low are not altered on the Event Generator
output, ie they remain as they were in the previous event.  After the event is produced, the
accumulator contains the event.

Get:
G.• value
where:

value (event-def) is a number which is placed into the accumulator.

This command places the value (either a literal or the contents of one of the event
registers) into the accumulator.

Increment:
I.• mask [ • increment ]
where:

mask (event-def) is a bit pattern which determines the field of the accumulator
which is to be accumulated.  The argument must contain a single cluster
of high bits.

increment (event-def) is the amount by which the mask field of the accumulator
is to be increased.  If increment is omitted then it defaults to one.

The value of increment and the carry register is added to a bit field in the accumulator
determined by the value of mask.  The result is placed back into the field of the accumulator and
the carry is placed into the carry register.  The carry register may be cleared using the ETD
command ClearCarry.

Using the carry register, non-contiguous fields in the accumulator may be incremented
by an arbitrary amount.  The carry register is first cleared and then the least significant field is
incremented.  The rest of the fields are then incremented by zero in order from the least to the
most significant.

Not:
N

This command performs an NOT function of the current contents of the accumulator and
places the result back into the accumulator.

Or:
O • or-value
where:

or-value (event-def) is a number which is ORed with the current contents of the
accumulator and the result is placed back into the accumulator.

This command performs an OR function of or-value and the current contents of the
accumulator and places the result back into the accumulator.

Put:
P • register
where:

register (event-def) is a register into which the contents of the accumulator are
deposited.  The argument must be in the register form of event-def.

This command places the contents of the accumulator into one of the event registers.

Sequence:
S • time-offset • elements • repetitions • period
where:



Control Computer Command Language 21

04/28/98

time-offset (reduced-BAT) is the offset from the current base time at which the
sequence is to begin.

elements (0..FFFF) is the number of ETDs following this line which form the list
to be executed.

repetitions (event-def) is the number of times the following list of ETDs is to be
repeated.  Note that this argument is of type event-def, so that the
number or repetitions can be independent of the actual ETD loaded, ie it
can be retrieved from a register.

period (reduced-BAT) is the time to be taken for one repetition.  This must be
equal to or greater than the time actually taken to execute all ETDs of
the sequence once.

The Sequence command provides the control structure for the ETD.  Following it should
be a list of elements ETDs which are executed sequentially repetitions times.

When an ETD is found to consist of a sequence, a base time variable is created.  The
initial value for the base time is the current value for the inherited base time plus the value of the
time-offset for this sequence.  Each time the sequence is repeated, the value of the period
argument is added to the base time.  The base time is used as the base for the time-offset
arguments of all the ETDs within the list.  The execution of a sequence does not alter the value
of the inherited base time.  The inherited base time at the top level of the ETD comes from the
ETD execution command.

XOr:
X • xor-value
where:

xor-value (event-def) is a number which is XORed with the current contents of
the accumulator and the result is placed back into the accumulator.

This command performs an XOR function of xor-value and the current contents of the
accumulator and places the result back into the accumulator.

.EE .EE
Execute an Event Timing Description (ETD).

.EE [ • etd-spec [ • start-time ] ]
etd-spec: 0..5010
start-time: 0..FFFFFFFFFFFF [.0..FFFFFFFF]

The .EE command executes a Event Timing Description (ETD) which was previously
loaded using the .LT command.  The start-time argument specifies the time (in reduced BAT with
optional fractional part) at which the ETD is to begin execution.  If the start-time argument is not
present then the ETD begins approximately 1 second after the command is received.  The
etd-spec argument specifies which ETD buffer is to be used.  If it is not given it is assumed to be
zero.  An ETD which has been loaded into memory may be executed any number of times using
the .EE command.  The .EE command returns the error code immediately and the ETD is
executed in the background.

.EI .EI
Initialise the event generator.

.EI



22 Control Computer Command Language

04/28/98

This command initialises the event generator.  It clears the event generator outputs,
stops the generation of events, and clears the software registers and all ETD buffers.  This
command should be executed before any commands which deal with the event generator.

.GT .GT
Get the current atomic time and accumulated leap seconds (DUTC).

.GT

This command returns the current atomic time and DUTC.  The command uses the
event generator to grab a frame from the clock and then decodes the time and DUTC from it.
The output data block consists of a single line containing a 64-bit unsigned hexadecimal number
representing the Modified Julian Date (MJD) in microseconds, followed by a space, followed by a
hexadecimal number representing the DUTC.

.LT .LT
Load an Event Timing Description (ETD).

.LT [ • etd-spec ]
etd-spec: 0..5010

This command loads an Event Timing Description (ETD).  The ETD is contained in an
input data block following the command.  It contains the control information for the event
generator outputs (see the introduction to this section).  This command does not execute the
ETD but simply parses it into a memory data structure.  Once in memory an ETD may be
executed using the .EE command which also sets the start time for the ETD.  In this way an ETD
may be executed any number of times using a different starting time for each run.

A number of ETDs may be present in the system at any time and the etd-spec argument
specifies which of the ETD buffers is to hold the ETD.  If it is not given it is assumed to be zero.
If the given ETD buffer contains a previous definition it is overwritten.

5 .  U t i l i t y  C o m m a n d s

The following is a description of utility commands which are available on both the Block
Control Computer (BCC) and Delay Unit Control Computer (DUCC) systems.

.EX .EX
Execute commands from a disk file.

.EX • file-name
file-name: file-name-type

This command executes commands taken from the given disk file.

.IP .IP
Get or Set the IP address of the node.

.IP • [ ip-address • subnet-mask ]
ip-address: ip address in ‘dot’ notation



Control Computer Command Language 23

04/28/98

subnet-mask: subnet mask in ‘dot’ notation

If no parameters supplied, commands returns the IP address, and subnet mask in a
standard data block.

This command executes commands taken from the given disk file.

.TI .TI
No operation.

.TI • <any number of dummy arguments>

This command does nothing except return a zero error code.  Previously this command set the
system time.


